Software Blogs - BlogCatalog Blog Directory security wireless network: Understanding Wi-Fi channels

search motor

LINUX DISTRIBUTIONS

The most known is backtrack versions(3 and 4) i will use backtrack4 another distributions wifiaway,wifislax.,everyone of them its specialase in auditoria of wireless network with a lot of programas like: airodump-wireles network scanner aircrack-its use to crack wep pass wireshark-internet traffic escanner It is a simple 3 examples of 3 programs from linux distributions you ask me how did this work how a hacker can use this to penetrate my wireless network: first one we need to download backtrack4http://www.backtrack-linux.org/ this is the link were you can download any backtrack you wish,try with live cd you can install backtrack into your sistem using a virual machine like VMWARE http://www.vmware.com/ this is the oficial site of vmware you need to download wmware workstation 7 you can use 30 days this program afree if you will subscrib (its free)i will put a video on youtube about how to run backtrack4 in vmware its very simple to do this. The youtube movie its show you how can a hacker crack a wireless network(wep key). The second video its about how can you run backtrack4 in vmware its very simple

SNIFFING PROGRAMS

Once penetrade the network the hacker can use snnifing programs such as cain&abel, wireshark,to see the internet trafic into the network with the final goal to steal your passwords. For now i will present only this two programs: cain&abel-its a complex program how has a sniffing tool and a crack tool. The basic idea in the traffic interceptation is that the attacker is interposed between the router and pc atacked so that traffic passes to the attacker pc first and then go to the router,this is the basic idea.i will put an video on this program,one more thing-i use this program under windows. wireshark-its almoust the same tipe that the first one but in this you will need to process a huge cantitate of data.This one its cames with backtrack4 but also can you use under windows.

WHAT CAN WE DO?

As you can see the tools hackers are diverse and complex as I illustrated above and is only a small part of the multitude of ways that we can be attacked, I think we should show more interest in everything around us and especially to new Wireless technology is the future because I believe that the transmission and receipt of data. How can we defend against these attacks, I have some advice: -If you have a wireless router and its has an wep key to have acces change it into an wpa key(choose a key that is not into the dictionary -phone number f.g) -check if at yor network are conected other pc that you know it If you connect through a public Internet network try to keep on mind that someone can spy on you and he can see what password that you type so dont type important psswords(such paypal pass)

miércoles, 3 de marzo de 2010

Understanding Wi-Fi channels

Now for a little talk about frequency bands used
by the various Wi-Fi standards. In 1985, the FCC
made changes to the radio spectrum regulation
and assigned three bands designated as the
industrial, scientific, and medical (ISM) bands.
These frequency bands are
902 MHz–928 MHz: A 26 MHz bandwidth
2.4 GHz–2.4835 GHz: An 83.5 MHz bandwidth
5.15–5.35 GHz and 5.725 GHz–5.825 GHz: A
300 MHz bandwidth
The FCC also opened some additional frequencies,
known as Unlicensed National Information
Infrastructure (U-NII), in the lower reaches of
the five GHz frequencies.
The purpose of the FCC change was to encourage
the development and use of wireless networking
technology. The new regulation
permits a user to operate, within certain guidelines,
radio equipment that transmits a signal
within each of these three ISM bands without
obtaining an FCC license.
Wireless networks use radio waves to send
data around the network. 802.11a uses part of
the U-NII frequencies, and IEEE 802.11b and g
use the ISM 2.4 GHz band. 802.11n can use
either band, though not all 802.11n systems do
(many use only the 2.4 GHz band).
An important concept when talking about frequencies
is the idea of overlapping and
nonoverlapping channels. As we discuss in
Chapter 18, signals from other APs can cause
interference and poor performance of your
wireless network. This happens specifically
when the APs’ signals are transmitting on the
same (or sometimes nearby) channels. Recall
that the standards call for a number of channels
within a specified frequency range.
The frequency range of 802.11g, for example, is
between 2.4 GHz and 2.4835 GHz, and it’s broken
up into fourteen equal-sized channels. (Only
eleven can be used in the United States — any
equipment sold for use here allows you to
access only these eleven channels.) The problem
is that these channels are defined in such a
way that many of the channels overlap with one
another — and with 802.11g, there are only
three nonoverlapping channels. Thus, you
wouldn’t want to have channels 10 and 11 operating
side by side because you would get signal
degradation. You want noninterfering, nonoverlapping
channels. So you find that people tend
to use Channels 1, 6, and 11, or something similar.
802.11a doesn’t have this problem because
its eight channels, in the 5 GHz frequency band,
don’t overlap; therefore, you can use contiguous
channels. As with 802.11b and g, however,
you don’t want to be on the same channel.

No hay comentarios:

 
Locations of visitors to this page
Nuestro blog en
casas madera y blogs
Reprezint Diaspora in recensamantul Bloggerilor Promoveaza-te pe acest blog
by HORAblogs